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Abstract

The next generation of semiconductor process and device modeling codes will re-

quire 3-D mesh capabilities including moving volume and surface grids, adaptive mesh

re�nement and adaptive mesh smoothing. To illustrate the value of these techniques,

a time dependent process simulation model was constructed using analytic functions to

return time dependent dopant concentration and time dependent SiO2 volume and sur-

face velocities. Adaptive mesh re�nement and adaptive mesh smoothing techniques were

used to resolve the moving boron dopant di�usion front in the Si substrate. The adaptive

mesh smoothing technique involves minimizing the L2 norm of the gradient of the error

between the true dopant concentration and the piecewise linear approximation over the

tetrahedral mesh thus assuring that the mesh is optimal for representing evolving solu-

tion gradients. Also implemented is constrained boundary smoothing, wherein the moving

SiO2/Si interface is represented by moving nodes that correctly track the interface mo-

tion, and which use their remaining degrees of freedom to minimize the aforementioned

error norm. Thus, optimal tetrahedral shape and alignment is obtained even in the neigh-

borhood of a moving boundary. If desired, a topological \reconnection" step maintains a

Delaunay mesh at all times. The combination of adaptive re�nement, adaptive smooth-

ing, and mesh reconnection gives excellent front tracking, feature resolution, and grid

quality for �nite volume/�nite element computation.
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The Multimaterial Grid Code X3D

X3D, the Los Alamos grid code1;2, is a toolbox of multimaterial grid generation,

adaptive mesh re�nement, adaptive mesh smoothing, mesh reconnection, and mesh ma-

nipulation operations that are well suited to semiconductor process and device modeling.

The toolbox commands operate on mesh objects that are user extensible and automatically

sized; information stored within the mesh objects assures the correct attribute values are

assigned to new nodes and elements as created and allow for time dependent geometric
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recon�guration that can result from moving grid and moving surface applications.

To illustrate the capabilities of X3D, a time dependent process simulation model was

constructed using analytic functions to return dopant concentrations and SiO2 surface

velocities. The model consists of layers of silicon, SiO2, polysilicon, and nitride: a T-

shaped mask is centered in the nitride. As the model is symmetric, only half the model

was calculated. Initially all interfaces are planar (Fig. 1) and the dopant isosurfaces are

highly curved (Fig. 2). Over time as the polysilicon is converted to SiO2, the nitride

region is pushed up; eventually the lower oxide surface penetrates the silicon at which time

the dopant di�usion is e�ectively stopped at the silicon/oxide interface (Figs. 3, 4). X3D

models the nitride region as a moving volume mesh, and models the lower oxide surface

as a moving surface. At each time step the X3D tool, extract, is invoked to create a

two dimensional mesh object, which is moved and then reinserted into the main three

dimensional mesh object. By reinvoking the geometry de�nition, nodes and elements are

assigned correct attributes.

Simultaneous Grid Adaption to Di�usion and Oxidation

In the lower Si portion of the model, an implanted boron dopant di�uses while at the

same time a moving oxide boundary shrinks the Si. Complete grid adaption is accomplished

by (1) re�ning the mesh based on the dopant concentration �eld, (2) smoothing the mesh

to minimize the error in representing the concentration �eld, and (3) reconnecting the mesh

to allow necessary topological changes to occur as the dopant �eld and problem domain

deform.

The X3D smooth option invokes Minimum Error Gradient Adaption (MEGA) which

is a 3D generalization of a 2D adaptive smoothing scheme of Bank and Smith3, combined

with the gradient weighting concept of Carlson and Miller4. The idea is to adjust the

positions of the vertices so as to minimize the functional

F =

Z



jjr(u� uL)jj
2
w dx: (1)

That is, the weighted L2 norm of the gradient of the error between the true solution u
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and its piecewise linear approximation uL on each tetrahedron. Minimizing the gradient of

the error leads to optimal resolution of solution gradients which can be crucial for correct

calculation of di�usion pro�les. A secondary bene�t of minimizing the error gradient is that

it works to prevent \tet collapse" as the mesh moves. This is because solution gradients are

poorly represented on wafer-thin tetrahedra, and are thus avoided when minimizing this

functional. For su�ciently large grids, the gradient weighting factor w can be omitted,

and the grids produced become independent of the scale of u, thus eliminating �ddling

with parameters.

Since the exact solution u in (1) is generally unknown, the method is to approximate

the error by the six quadratic \bump" functions associated with the edges of each tetrahe-

dron. (The \bump" functions are the pairwise products of the four linear \hat" functions

associated with the four vertices of each tetrahedron.) To use the smooth command,

all that is needed is an estimate of the error at each edge midpoint in the mesh. In our

analytical model of boron di�usion, this data is exactly known, but this data can also be

obtained as a posteriori error estimates which are routinely computed when numerically

solving di�erential equations.5

In Fig. 5, we show the initial Silicon grid with boron contours of greatly exaggerated

width. In Fig. 6 we show this grid after adaptive re�nement; contour widths have been

corrected but are highly irregular. A call to recon has been issued|the recon command

is a novel 3D algorithm for re-establishing a Delaunay triangulation after mesh movement.

Recon performs internal face swaps and boundary edge swaps in the mesh which typically

modify a small proportion of the mesh connectivity during any given time step. As is well

known, maintaining a Delaunay grid at all times is a crucial requirement for many �nite

volume PDE solvers. In Fig. 7, we show the e�ect of smoothing the grid via Minimum

Error Gradient Adaption; the grid has now contracted and realigned to accurately resolve

the boron contours.

In Fig. 8, we show the grid at t = 4000 when the oxide interface has partially collapsed

the solution domain. Note how the front surface grid distribution has shown the remarkable
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ability to \deconcentrate" (through the repeated use of smooth and recon) as the boron

di�uses.

In Figs. 9-11, we show a workstation run with 9765 nodes where we have chosen not

to re�ne or reconnect the mesh, but to adapt the mesh solely with MEGA. Note the \tri-

band" structure at t = 0 which indicates locations of large second derivative in the dopant

function. Fig. 11 is a close-up of the front face of the smoothed t = 0 mesh and shows

boron contours in a region of very high curvature. In contrast, Fig. 12 shows the same

close-up on a much larger uniform hexahedral grid of 206,500 nodes. (The full hexahedral

grid is not pictured.) The contours are more accurately resolved on the smaller MEGA

smoothed mesh.

References

1. D.C. George, X3D User's Manual, Los Alamos National Lab Report LA-UR-95-3608

(1995).

2. H.E. Trease, Three-Dimensional Free Lagrangian Hydrodynamics, Proceedings of the

�rst Free-Lagrange Conference, Lecture Notes in Physics, Springer-Verlag, Vol. 238

(1985), pp. 145-157.

3. R.E. Bank and R.K. Smith, Mesh smoothing using a posteriori error estimates, SIAM

J. Sci. Comp., to appear.

4. N. Carlson and K. Miller, Gradient weighted moving �nite elements in two dimensions,

in \Finite Elements Theory and Application", D.L. Dwoyer, M.Y. Hussaini and R.G.

Voight, editors, pp. 151-164, Springer Verlag, 1988.

5. R.E. Bank and R.K. Smith, Some a posteriori error estimates based on hierarchical

bases, SIAM J. Numerical Analysis, 30 (1993), pp. 921-935.

4



Figure 2:  Boron concentration      
                 contours at  t = 0.

Figure 1:  Initial planar surface     
                 and interface grids with  
                 T−mask.                                

Figure 3:  Boron concentration   
                 contours and moving 
                 surfaces at  t = 800.

Figure 4:  Boron concentration 
                 contours and surfaces
                 at  t = 3600.
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Figure 6:  Refined, reconnected    
                 initial grid.

Figure 5:  Initial unrefined,   
                 unsmoothed regular grid    
                 with boron contours.

Figure 7:  Refined, reconnected and 
                 smoothed initial grid.

Figure 8:  MEGA smoothed grid at
                  t = 4000.
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Figure 9:  MEGA smoothed grid 
                 with 9765 nodes at t=0.

Figure 10:  Grid at t=8000 showing
                    boron contours.

Figure 11:  MEGA smoothed grid 
                   with 9765 nodes at t=0.
                   (Close−up showing 
                    boron contours.)

Figure 12:  Same close−up as Fig. 11,
                    but using 206,500 node
                    uniform hexahedral grid.
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